rs1769793 variant reduces *EGLN1* expression in skeletal muscle and hippocampus and contributes to high aerobic capacity in hypoxia

Guiyou Liu^{a,b,c,1}[®], Wenbo Zhao^b, Haihua Zhang^{a,c}, Tao Wang^{d,e}, Zhifa Han^{f,g,h,i}, and Xunming Ji^{a,b,c,j,k,1}

Evidence shows that *EGLN1* could control the hypoxia-inducible factor- α (HIF-1 α) level by suppressing its transcriptional activity, which, in turn, regulates the cellular hypoxic response (1–3). Brutsaert et al. (4) analyze 429 Peruvian Quechua individuals and 94 US lowland referents. They identify five *EGLN1* variants (rs1769793, rs2064766, rs2437150, rs2491403, and rs479200) to be associated with higher VO₂max in hypoxia (4). They further demonstrate the role of natural selection in increasing the frequency of *EGLN1* genetic variants at high altitude (4).

However, it remains unclear how these variants affect high aerobic capacity in hypoxia, as they are located in noncoding regions of EGLN1 or outside the EGLN1 gene boundaries (4). In discussion, Brutsaert et al. (4) hypothesize that these variants may be regulatory, which needs to be further investigated. However, they do not directly evaluate the regulatory relation, which prompts us to conduct further investigation. Our recent expression quantitative trait loci (eQTLs) analysis indicated that genetic variants, especially in noncoding regions, could regulate gene expression (5-9). Using SNiPAv3.3 (a tool for annotating and browsing genetic variants), we found that all five of these EGLN1 variants were in high linkage disequilibrium with each other. Hence, we select the most significant variant rs1769793 to evaluate its association with EGLN1 gene expression.

The eQTLs dataset is from the Genotype-Tissue Expression project (version 8) including 49 tissues (number of samples with genotype \geq 70) (10). Here, we select the FastQTL to perform the eQTLs analysis by adjusting for some key covariates (10). The statistical significance for eQTLs analysis is a Bonferroni-

corrected threshold of P < 0.05/49 = 1.00E-03. Meanwhile, we conduct a gene expression analysis to investigate the distribution of *EGLN1* expression in these 49 tissues. The gene expression level is quantified by transcripts per million (TPM) based on the GENCODE (encyclopedia of DNA elements) 26 annotation, collapsed to a single transcript model for each gene using a custom isoform collapsing procedure (10). Here, we select the *t* test or analysis of variance method to evaluate the distribution difference of *EGLN1* expression in different tissues. The statistical significance is P < 0.05.

The eQTLs analysis indicates that the rs1769793 T allele, which is associated with higher VO₂max in hypoxia, could significantly reduce *EGLN1* expression in skeletal muscle (P = 5.20E-05) and hippocampus (P = 2.90E-04). Meanwhile, the rs1769793 T allele is also associated with reduced *EGLN1* expression in other brain tissues including cortex, hypothalamus, amygdala, cerebellum, and putamen, as provided in Table 1. The gene expression analysis shows that *EGLN1* has the highest expression in skeletal muscle compared with the other 48 tissues (P < 0.05), as provided in Table 1.

Taken together, our findings show that *EGLN1* is mainly expressed in skeletal muscles, and rs1769793 T allele reduces *EGLN1* expression in skeletal muscle and hippocampus, which may, in turn, promote HIF-1 α transcriptional activity and contribute to high aerobic capacity in hypoxia. Importantly, our results are consistent with previous findings from William G. Kaelin Jr. and colleagues (2). They revealed that inhibiting Egln1 in skeletal muscles could protect mice against myocardial ischemia–reperfusion injury (2). Hence, our findings may provide important information about the role of rs1769793 in hypoxia.

Published under the PNAS license.

Downloaded at Palestinian Territory, occupied on November 29, 202

¹To whom correspondence may be addressed. Email: liuguiyou1981@163.com or jixm@ccmu.edu.cn. First published October 27, 2020.

^aBeijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China; ^bDepartment of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; ^cNational Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; ^dAcademy for Advanced Interdisciplinary Studies, Peking University, Beijing 100053, China; ^eDepartment of Bioinformatics, Chinese Institute for Brain Research, Beijing 102206, China; ^fSchool of Medicine, Tsinghua University-Peking University Center for Life Sciences, Tsinghua University, Beijing 100084, China; ^fSchool of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; ^fState Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China; ⁱDepartment of Pathophysiology, Peking Union Medical College, Beijing 100021, China; ⁱDepartment of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; ⁱDepartment of Pathophysiology, Peking Union Medical College, Beijing 100021, China; ⁱDepartment of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; and ^kCollaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100054, China; ^kCapital Medical University, Beijing 100054, China; ^kCapital Medical University, Beijing 100054, China; ^kCollaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100054, China; ^kCollaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100054, China; ^kCollaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100054, China; ^kCollaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100054, China; ^kCollaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100054, China; ^kCollaborative Inno

Author contributions: G.L. and X.J. designed research; G.L., W.Z., H.Z., Z.H., and X.J. performed research; G.L., W.Z., H.Z., T.W., Z.H., and X.J. contributed new reagents/analytic tools; G.L., W.Z., H.Z., T.W., and Z.H. analyzed data; and G.L., W.Z., H.Z., T.W., Z.H., and X.J. wrote the paper. The authors declare no competing interest.

SNP	Beta	SE	P value	Tissue	Samples	EGLN1 expression
rs1769793	-0.033	0.030	2.60E-01	Adipose - subcutaneous	581	40.15
rs1769793	-0.088	0.038	2.30E-02	Adipose - visceral	469	24.81
rs1769793	0.130	0.059	3.00E-02	Adrenal gland	233	21.13
rs1769793	-0.094	0.045	3.30E-02	Artery - aorta	387	27.97
rs1769793	-0.140	0.067	4.10E-02	Artery - coronary	213	27.09
rs1769793	-0.019	0.031	5.40E-01	Artery - tibial	584	34.18
rs1769793	-0.190	0.083	2.40E-02	Brain - amyqdala	129	16.39
rs1769793	-0.079	0.061	2.00E-01	Brain - anterior cinqulate cortex	147	17.84
rs1769793	-0.092	0.048	5.50E-02	Brain - caudate	194	18.57
rs1769793	-0.083	0.044	5.70E-02	Brain - cerebellar hemisphere	175	29.55
rs1769793	-0.089	0.042	4.00E-02	Brain - cerebellum	209	24.69
rs1769793	-0.100	0.036	5.40E-03	Brain - cortex	205	16.69
rs1769793	-0.047	0.043	2.80E-01	Brain - frontal cortex	175	19.97
rs1769793	-0.180	0.049	2.90E-04	Brain - hippocampus	165	16.89
rs1769793	-0.130	0.050	1.10E-02	Brain - hypothalamus	170	17.92
rs1769793	-0.077	0.045	1 00F-01	Brain - nucleus accumbens	202	20.62
rs1769793	-0 110	0.055	4 80F-02	Brain - putamen	170	15.60
rs1769793	-0.075	0.106	4 80F-01	Brain - spinal cord	126	23 47
rs1769793	-0.070	0.076	3.60E-01	Brain - substantia nigra	114	17 56
rs1769793	_0.024	0.078	5 20E-01	Breast - mammary tissue	396	27.40
rs1769793	0.024	0.000	5 50F-01	Cells - cultured fibroblasts	483	26.48
rs1769793	_0.044	0.020	5.00E 01	Cells - EBV-transformed lymphocytes	147	18 79
rs1769793	_0.058	0.072	2 50E-01	Colon - sigmoid	318	30.26
rs1769793	_0.015	0.040	6 20E-01	Colon - transverse	368	21 15
rc1769793	_0.015	0.030	2 /0E_01	Esophagus - gastroesophageal junction	330	26.50
rs1769793	_0.021	0.047	4 40F-01	Esophagus - mucosa	497	17.00
rc1769793	_0.021	0.027	9.30E-01	Esophagus - mucularis	477	27.96
rc1769793	0.007	0.033	8 10E-01	Heart - atrial appendage	372	19.72
rc1769793	_0.000	0.004	9 30E-01	Heart - left ventricle	386	19/13
rc1769793	0.050	0.027	6 60E-01	Kidney - cortex	73	12 59
rc1769793	_0.050	0.043	2 10E-01	liver	208	13.97
rc1760703	0.054	0.043	2.10L-01		515	15.29
rc1760703	0.004	0.032	9.70L-02	Minor saliyang gland	144	15.20
rc1760703	0.004	0.077	5 20E 05	Musele skoletal	706	155.90
rc1760703	0.077	0.017	2 10E 01	Nonco tibial	532	36.21
rc1760703	0.047	0.030	2.102-01		167	20.21
rc1760703	0.054	0.003	1 00E 01	Paperoas	305	27.05
rc1760703	0.030	0.045	1.70E-01	Pituitany	227	19.80
rc1760703	0.043	0.050	2 00E 02	Prostato	237	17.00
rc1760703	0.110	0.030	2.701-02	Skin not sun exposed	517	27 21
151707773	-0.030	0.030	2.30L-01	Skin - not sun exposed	405	27.21
151707773	-0.014	0.027	0.30E-01	Skill - sull exposed	174	17.21
151707773	0.001	0.042	1 00E 01	Soloon	227	17.31
rc1760703	0.030	0.031	4.70E-01	Stomach	324	17.47
151/07/73	-0.033	0.030	2.70E-01	Tostia	224	11.07
151/07/73	0.017	0.023		Thursid	522	14.27
151/07/73		0.03/	0.00E-01	Literue	5/4 120	17.U0 20.75
151/07/73	-0.075	0.000		Vening	1/1	27./J
151/07/73	-0.01/	0.100	0.00E-01	vayına Whale blood	141	23.0/
151/07/73	-0.02 I	0.015	1.00E-01		6/0	10.40

Гable 1.	rs1769793 varia	nt T allele and	EGLN1 expressi	on in 49 human tissu	es
----------	-----------------	-----------------	----------------	----------------------	----

SNP, single-nucleotide polymorphism; EBV, Epstein–Barr virus; Beta is the regression coefficient based on the effect allele. Beta > 0 and Beta < 0 means that this effect allele increases and reduces gene expression, respectively. The threshold of statistical significance for eQTLs analysis is P < 0.05/49 = 1.00E-03. The gene expression values are shown in TPM. The gene expression level is quantified by TPM based on the GENCODE 26 annotation, collapsed to a single transcript model for each gene using a custom isoform collapsing procedure.

¹ K. K. To, L. E. Huang, Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptional activity by the HIF prolyl hydroxylase EGLN1. J. Biol. Chem. 280, 38102–38107 (2005).

² B. A. Olenchock et al., EGLN1 inhibition and rerouting of α-ketoglutarate suffice for remote ischemic protection. Cell 164, 884–895 (2016).

³ M. Ivan, W. G. Kaelin Jr., The EGLN-HIF O₂-sensing system: Multiple inputs and feedbacks. Mol. Cell **66**, 772–779 (2017).

⁴ T. D. Brutsaert et al., Association of EGLN1 gene with high aerobic capacity of Peruvian Quechua at high altitude. Proc. Natl. Acad. Sci. U.S.A. 116, 24006–24011 (2019). Correction in: Proc. Natl. Acad. Sci. U.S.A. 117, 3339 (2020).

⁵ G. Liu, H. Zhang, B. Liu, X. Ji, Rs2293871 regulates HTRA1 expression and affects cerebral small vessel stroke and Alzheimer's disease. Brain 142, e61 (2019).

- 6 G. Liu et al., rs4147929 variant minor allele increases ABCA7 gene expression and ABCA7 shows increased gene expression in Alzheimer's disease patients compared with controls. Acta Neuropathol. 139, 937–940 (2020).
- 7 G. Liu, Y. Hu, Z. Han, S. Jin, Q. Jiang, Genetic variant rs17185536 regulates SIM1 gene expression in human brain hypothalamus. Proc. Natl. Acad. Sci. U.S.A. 116, 3347–3348 (2019).
- 8 Y. Hu, S. Jin, L. Cheng, G. Liu, Q. Jiang, Autoimmune disease variants regulate GSDMB gene expression in human immune cells and whole blood. Proc. Natl. Acad. Sci. U.S.A. 114, E7860–E7862 (2017).
- 9 G. Liu, S. Jin, Y. Hu, Q. Jiang, Disease status affects the association between rs4813620 and the expression of Alzheimer's disease susceptibility gene TRIB3. Proc. Natl. Acad. Sci. U.S.A. 115, E10519–E10520 (2018).
- 10 A. Battle, C. D. Brown, B. E. Engelhardt, S. B. Montgomery; GTEx Consortium; Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working Group; Statistical Methods groups—Analysis Working Group; Enhancing GTEx (eGTEx) groups; NIH Common Fund; NIH/NCl; NIH/NHGRI; NIH/NIMH; NIH/NIDA; Biospecimen Collection Source Site—NDRI; Biospecimen Collection Source Site—RPCl; Biospecimen Core Resource—VARI; Brain Bank Repository—University of Miami Brain Endowment Bank; Leidos Biomedical—Project Management; ELSI Study; Genome Browser Data Integration &Visualization—UCSC Genomics Institute, University of California Santa Cruz; Lead analysts; Laboratory, Data Analysis &Coordinating Center (LDACC); NIH program management; Biospecimen collection; Pathology; eQTL manuscript working group, Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).